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Abstract 

This article deals with cooperation issues in international pollution problems in a two 
dimensional dynamic framework implied by the accumulation of the pollutant and of the 
capital goods. Assuming that countries do reevaluate at each period the advantages to 
cooperate or not given the current stocks of pollutant and capital, and under the assumption 
that damage cost functions are linear, we define at each period of time a transfer scheme 
between countries, which makes cooperation better for each of them than non-cooperation. 
This transfer scheme is also strategically stable in the sense that it discourages partial 
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Introduction

This paper extends to a two dimensional setting - pollutant emissions and investment in capital
goods - the dynamic game theoretic results established for the one dimensional model of interna-
tional environmental agreements by Germain Tulkens and de Zeeuw 1998 (closed loop, linear case)
and by Germain, Toint, Tulkens and de Zeeuw 2003 (closed loop, non linear case) 1

Economically, a serious limitation of these contributions is that in the model they use, pollution
abatement is independent of investment and of capital accumulation, so that growth of the economies
is either absent or exogenous. There is indeed only one control variable for each country, namely the
level of its emissions and, for the economy taken as a whole, only one state variable. The economic
model is one of partial equilibrium cost minimization. The aim of this paper is to broaden the
perspective by considering investment in each country as a second control variable as well as the
country’s accumulated capital as a second state variable. The economic model thus moves towards
one of general equilibrium utility maximization.

In this context, the central issue of these two papers is taken up again here, namely whether
stable and efficient cooperation among countries in the core-theoretic sense of a cooperative game
at each period can be established, possibly using appropriately designed transfers. As in the two
previous papers, a positive answer is obtained in terms of a sequence of self enforcing cooperative
international agreements, that we call a coalitionally (or strategically) stable path of the economic-
ecological system.2 Here as in Germain et al. 1998, damage cost functions are assumed linear. Thus
far, the non linear case of Germain et al. 2003 remains open for a similar extension.3

The issues raised by the necessity of cooperation amongst the countries involved in an transfron-
tier pollution problem if a social optimum is to be achieved, have been addressed in the literature
in terms of game theory concepts starting with static (one shot) games (see Mäler (1989), followed
by Chander and Tulkens (1992), Kaitala, Mäler and Tulkens (1995)). These are only suitable for
flow pollution models. Stock pollutant problems introduce an intertemporal dimension, for which
dynamic game theory is a more appropriate tool of analysis, as is done in e.g. van der Ploeg and
de Zeeuw (1992), Kaitala, Pohjola and Tahvonen (1992), Hoel (1992), Tahvonen (1993), Petrosjan
and Zaccour (1995).

Except for the last one, the other four contributions leave aside the issue of the voluntary
implementation of the international optimum. This is an important drawback since no supranational
authority can be called upon to impose the optimum in a context where the countries’ interest in
cooperation diverges strongly between one another, and especially if some countries loose when the
social optimum is implemented. In view of ensuring such implementation, it was already shown in
the static case by Tulkens (1979) that there exists feasible transfers between the countries involved
that would provide incentives towards cooperation. This property, understood later as inducing
strategies belonging to the core of a cooperative game, has in effect been demonstrated for a static
game by Chander and Tulkens (1995, 1997), who propose a specific transfer scheme achieving the

1Hereafter, Germain et al. 1998 and Germain et al. 2003, respectively.
2Another concept of coalitional stability, called ”internal and external stability” and due to d’Aspremont and

Jaskold Gabszewicz 1986, was introduced in an international environmental dynamic game by Rubio and Ulph 2008,
leading to quite different results than those obtained here as to the formation of the grand coalition.

3The non linear case was treated in an open loop setting by Eyckmans and Tulkens 2003. Coalitional stability
was also established there, albeit of a substantially different kind due to the open loop assumption.
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stated purpose. This result has been extended by Germain, Toint and Tulkens (1998) to the larger
context of open-loop dynamic games, and thereafter to closed-loop (or feedback) dynamic games in
the two papers mentioned at the outset. For a similar approach where transfers guarantee dynamic
individual rationality understood as time-consistency and agreeability (with an application to a
international pollution problem), see Jorgensen, Martin-Herran and Zaccour (2003).

The structure of the present paper is as follows. Section 1 presents the international stock
pollutant model with capital accumulation in each country. In section 2, transfers are formulated
so as to ensure that each country is not worse off when it participates in an international agreement,
compared to a no agreement situation described as a Nash equilibrium. Section 3 computes the
main variables of the model, including the transfers, at each period. Section 4 presents a theorem
establishing that a specific form of the transfers achieves coalitional stability in the sense of the core
of a cooperative game.

1 Preliminaries

1.1 Components of the model

Our economic model is written in discrete time. Consider n countries indexed by i ∈ N =
{1, 2, ..., n} and some planning period T = {1, 2, ..., T} (T , the planning horizon, is a positive
integer, possibly infinite). In the following, all variables (production, investment, capital stock,
pollutant emissions, pollution stock) are positive, the first three of which are economic while the
last two are ecological. We therefore deal with an economic-ecological model.

Each country i is characterised by an aggregate production function :

yit = Fi(kit, eit) (1)

where yit, kit, eit are respectively the production, the stock of capital and the consumption of energy
of country i at time t. We assume throughout that Fi satisfies the standard properties of a neo-
classical production function, as reported in the following assumption :

Assumption 1: The function Fi : R2
+ −→ R+ satisfies the following conditions:

(i) f(0, 0) = 0.
(ii) f is twice continuously differentiable.
(iii) fk(k, e) > 0 and fe(k, e) > 0, for all k, e.
(iv) fe(k, 0) = +∞, for all k > 0.
(v) f is differentiably strictly concave jointly in (k, e), i.e.

fkk < 0, fee < 0, and fkkfee − f 2
ke > 0.

All components of this assumption are standard in production theory and have well known
economic interpretations.

The capital stock is assumed to accumulate following :

kit = [1− δi]ki,t−1 + hit, i ∈ N (2)

where hit is investment of country i at date t and δi is the rate of depreciation of capital of country
i (0 < δi < 1).
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Pollution emitted by a country is assumed to be proportional to its energy consumption. For
the sake of simplicity and without loss of generality, we denote the two quantities by the same
symbol.Thus et = (e1t, ..., ent)

′ is the vector of the different countries’ emissions of a certain pollutant
at time t. These emissions spread uniformly in the atmosphere and contribute to a stock of pollutant
z according to the equation

zt = [1− γ]zt−1 +
n∑

i=1

eit (3)

where the initial stock of pollutant z0 is given and where γ is the pollutant’s natural rate of
degradation (0 < γ < 1). As described in (3), the current stock is a linear function of the inherited
stock zt−1 and of the current emissions et.This model describes, for example, the basics of the
climate change problem where the flows of emissions of greenhouse gases accumulate into a stock,
which only gradually assimilates and which is the cause of the climate change.

The stock of pollutant causes damages to each country’s environment. For country i (i ∈ N ),
these damages during period t are measured in monetary terms by the function Di(zt), where Di is
supposed to be a linear function of the current stock zt :

Assumption 2: The function Di : R+ → R+ is of the form:

Di(zt) = πizt (4)

where πi is positive number.
Finally, let for each i ∈ N

Wi =
T∑

t=1

ρt−1 [Fi(ki,t, ei,t)− hi,t − πizt] (5)

denote the discounted sum of the stream of collective consumption enjoyed by the population of
country i over the planning period T , where 0 < ρ < 1 is a discount factor.

Bringing together all the above, we call the resulting model an ”economic-ecological system”.
For such a system, any (3n + 1)T dimensional vector {(ei,t, hi,t, ki,t, zt) , i ∈ N , t ∈ T } satisfying (2)
and (3) constitutes a feasible path for the planning period T , yielding each country i a collective
consumption (5).

1.2 Non cooperative vs cooperative behaviors and the issue of coali-
tional stability

For the so described international economy with environmental interactions, we deal in this paper
with two planning issues, each of which corresponds to an alternative behavioral assumption on the
countries’ policies regarding pollutant emissions. In the first case we assume that each country i
simply pursues its own interest in its choice of both emission and investment policies, (ei,t, t ∈ T )and
(hi,t, t ∈ T ) respectively, ignoring the external effects induced by the former on the other countries
through the stock accumulation process described by equation (3). Such behavior is formally
expressed, for each country, by the solution of the dynamic optimization problem consisting in
maximizing the value of (5) with respect to the control variables eit and hit, subject to the constraints
(2) and (3) whereby the state variables (ki,t, t ∈ T , i ∈ N ) and (zt, t ∈ T ), respectively, are defined.
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Internationally, the outcome of such parallel behaviors is in the nature of a Nash equilibrium of a
non cooperative game in which the players are the countries and their strategies are the policies
just mentioned. We call this outcome the Non Cooperative Nash Equilibrium (NCNE) and denote
it (ei,t, i ∈ N , t ∈ T ), (hi,t, i ∈ N , t ∈ T ) and (zt, t ∈ T )

In the second case, the assumption is made that while still seeking their interest as expressed
by (5), all countries also do take into account the external effects induced on the other countries by
their emission decisions. This is formalized by the solution of the alternative, and single, dynamic
optimization problem consisting in maximizing the sum over all i’s of (5) with respect to all control
variables eit and hit, i = 1, 2, ..., n, subject as before to (2) and (3) whereby the state variables
are defined. Internationally, the outcome of such coordinated behaviors is in the nature of Pareto
efficient strategies of the cooperative version of the game defined above. We call this outcome the
International Optimum (IO) and denote it (eNi,t, i ∈ N , t ∈ T ), (hNi,t, i ∈ N , t ∈ T ) and (zNt , t ∈ T ).

The well known difference between the Nash equilibrium and Pareto efficient solutions just
stated prompts the following normative question: can a policy instrument be devised whereby the
countries would be induced to move away from the Nash equilibrium trajectory, which is inefficient,
and adopt instead the Pareto efficient one, while being assured that they would not loose from
this move, neither individually nor by forming coalitions? This is exactly what is achieved by
the Chander-Tulkens transfer scheme mentioned above whose dynamic extension by Germain et
al. 1998 was formulated for the one-dimensional case only. We now turn to the two-dimensional
economic setting introduced in the previous subsection.

2 Transfers to stabilize the international optimum

2.1 The transfers at the final time T

The matter is handled by backward induction.

2.1.1 The partial Nash equilibrium w.r.t. a coalition U at time T

If a coalition forms, there first should be specified which state of the system is going to prevail,
that is, which paths are going to be followed by the countries. For that purpose, we transpose to
the present dynamic context a concept introduced by Chander and Tulkens (1997) and define the
partial Nash equilibrium w.r.t. a coalition U at time T (PANE UT ) as follows. Let U be a subset
of N formed by countries that behave cooperatively between themselves. The other countries are
assumed to behave individually. Formally, for given kN ,T−1 =def {ki,T−1, i ∈ N} and zT−1 :
(i) the members of coalition U maximize jointly the sum of their utilities :

max
hUT ,eUT

∑
i∈U

[Fi(kiT , eiT )− hiT − πizT ] (6)

where hU,T =def {hiT , i ∈ U} , eU,T =def {eiT , i ∈ U}, under constraints (2) and (3) and taking
ej,T , hj,T (∀j /∈ U) as given.
(ii) each country outside the coalition solves :

max
hiT ,eiT

Fi(kiT , eiT )− hiT − πizT , i /∈ U (7)

5



under constraints (2) and (3), and taking ej,T , hj,T (∀j 6= i) as given.
Given (2), the previous objectives can be equivalently maximized w.r.t. kT and eT . The simul-

taneous solution of these problems leads to a set of FOC that fully characterize the PANE UT :
(i) for the members of coalition U :

∂Fi

∂kiT

= 1 (8)

∂Fi

∂eiT

= πU =def

∑
i∈U

πi (9)

(ii) for a country outside the coalition :

∂Fi

∂kiT

= 1 (10)

∂Fi

∂eiT

= πi (11)

Let kU
iT , eU

iT (i ∈ N ) be the solution of the FOC (8) to (11) and

zU
T = [1− γ]zT−1 +

n∑
i=1

eU
iT (12)

The payoffs of the countries are given by the following value functions :

wU
iT (ki,T−1, zT−1) = Fi(k

U
iT , eU

iT )− kU
iT + [1− δi]ki,T−1 − πiz

U
T , i ∈ N (13)

so that the payoff of coalition U is given by the value function :

WU
T (kU,T−1, zT−1) =

∑
i∈U

wU
iT (ki,T−1, zT−1) =

∑
i∈U

[
Fi(k

U
iT , eU

iT )− kU
iT + [1− δi]ki,T−1 − πiz

U
T

]
(14)

where kU,T−1 =def {ki,T−1, i ∈ U} .

2.1.2 Two particular cases

The PANE UT generalizes the two important particular outcomes mentioned earlier, namely the
NCNE and the IO. Indeed on the one hand, the non-cooperative Nash equilibrium at time T
(NCNET ) is obtained when the coalition is a singleton (U = v =def {i} for any i), i.e. all countries
are assumed to behave individually. Then the payoffs of the countries are given by the following
value functions:

wv
iT (ki,T−1, zT−1) = Fi(k

v
iT , ev

iT )− kv
iT + [1− δi]ki,T−1 − πiz

v
T , i ∈ N (15)

where kv
iT , ev

iT are the solution of the FOC (8) to (11) when U = v, and

zv
T = [1− γ]zT−1 +

n∑
i=1

ev
iT (16)
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On the other hand, the international optimum at date T (IOT ) obtains when the coalition
contains all countries (U = N ) and all members are supposed to maximize jointly the sum of their
utilities. The payoff of country i at the optimum is given by the following value function :

wN
iT (ki,T−1, zT−1) = Fi(k

N
iT , eNiT )− kNiT + [1− δi]ki,T−1 − πiz

N
T (17)

so that the global payoff of all countries is given by the value function :

WN
T (kN ,T−1, zT−1) =

n∑
i=1

wN
iT (ki,T−1, zT−1) =

∑
i∈N

[
Fi(k

N
iT , eNiT )− kNiT + [1− δi]ki,T−1 − πiz

N
T

]
(18)

where kN ,T−1 =def {ki,T−1, i ∈ N} , kNiT , eNiT (i ∈ N ) are the solution of the FOC (8) to (11) when
U = N , and

zNT = [1− γ]zT−1 +
n∑

i=1

eNiT (19)

By definition of the optimum, one verifies that

WN
T (kN ,T−1, zT−1) ≥

n∑
i=1

wU
iT (ki,T−1, zT−1), ∀U ⊂ N (20)

Thus, from a collective point of view, the IOT is preferable to any solution of the partial agreement
type, the least preferred being the NCNET . The difference WN

T (kN ,T−1, zT−1)−
∑n

i=1 wv
iT (ki,T−1, zT−1)

is called by Chander and Tulkens (1997) the ecological surplus resulting from international cooper-
ation.

However (20) may not be sufficient to ensure cooperation4. Indeed if ∃U ⊂ N such that∑
i∈U wN

iT (ki,T−1, zT−1) < WU
T (kU,T−1, zT−1), then coalition U will not cooperate without compensa-

tion for the lower payoff it obtains.

2.1.3 Transfers

Since the horizon of time is limited to the single period t = T , one can use the transfers formula
proposed by Chander and Tulkens (1997) in a static framework. The idea is that the required
compensation can be achieved by an appropriate sharing of the ecological surplus. Let

θiT (kN ,T−1, zT−1) = −[wN
iT (ki,T−1, zT−1)− wv

iT (ki,T−1, zT−1)] (21)

+
πi

πN
[WN

T (kN ,T−1, zT−1)−
n∑

i=1

wv
iT (ki,T−1, zT−1)]

be the transfer (> 0 if received, < 0 if paid) to country i at time T , where πN =def

∑
i∈N πi. By

construction, the budget of the transfers defined by (21) is balanced, i.e. :

n∑
i=1

θiT (kT−1, zT−1) = 0 (22)

4This is why we refrain from calling the IO an international cooperative optimum, as is often, and mistakenly,
asserted in the literature. Cooperation results from individual and coalitional rationality; efficiency, i.e. the fulfilment
of (18), is not a sufficient condition for cooperation.
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Then at the international optimum country i’s payoff including transfers becomes :

w̃N
iT (kN ,T−1, zT−1) = wN

iT (ki,T−1, zT−1) + θiT (kN ,T−1, zT−1) (23)

= wv
iT (ki,T−1, zT−1) +

πi

πN
[WN

T (kN ,T−1, zT−1)−
n∑

i=1

wv
iT (ki,T−1, zT−1)]

Since the ecological surplus is positive, one has :

w̃N
iT (kN ,T−1, zT−1)−wv

iT (ki,T−1, zT−1) =
πi

πN
[WN

T (kN ,T−1, zT−1)−
n∑

i=1

wv
iT (ki,T−1, zT−1)] ≥ 0, ∀i ∈ N

(24)
Thus cooperation with the transfers (21) is individually rational at time T , in the sense that each
country is better off at the IO with these transfers than at the non cooperative Nash equilibrium,

Following Chander and Tulkens (1997), one also has the following stronger result5 :

∑
i∈U

w̃N
iT (ki,T−1, zT−1) ≥ WU

T (kU,T−1, zT−1), ∀U ⊂ N (25)

i.e. cooperation with transfers is coalitionally rational, or self enforcing at time T , in the sense
that any coalition would enjoy only a lower payoff than the one it would obtain at the IOT with
transfers, if it were to defect from this IOT and revert to the PANET w.r.t. itself. In terms of game
theory, such a property is summarized by saying that the vector (w̃N

iT , i ∈ N) is an imputation that
belongs to the core of a cooperative game associated with the economic model. Full details are
given in the paper just quoted.

2.2 The transfers at earlier periods

Countries know that, whatever they do previously to T , transfers exist (defined by (21)) that make
the IOT preferable for each of them with respect to all other solutions. The problem we wish to
consider now is whether transfers can be designed that make all countries interested in cooperating
for periods previous to T as well.

Let us suppose that there exists a sequence of transfers that makes the IOτ ’s preferable for all
countries at times {τ = t + 1, ..., T} . We make two important behavioral assumptions :
(i) these transfers induce effectively cooperation from t + 1 onwards6, and
(ii) all countries therefore (rationally) expect at t that they will cooperate in all subsequent periods
{t + 1, ..., T}.

Given these assumptions, we show in the following that it is indeed possible to define transfers
that make the IOt preferable for all countries at time t.

5The proof of their Theorem 1 carries over directly to the present case because the variables ki,T−1 and zT−1

only play a parametrical role here.The expression (25) holds whatever the inherited stock of pollutant zT−1 and the
vector of capital stocks kN ,T−1.

6Note that, following Chander and Tulkens (1997, section 5), one could indeed obtain the cooperative optimum
with transfers as an equilibrium, called ratio-equilibrium.
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2.2.1 The partial fallback equilibrium w.r.t. a coalition U at time t

Let U be a subset of N formed by countries that behave cooperatively between themselves at t
(while expecting international cooperation sustained by transfers from t + 1 onwards) and take the
other countries’ investment and energy consumption as given. This coalition will thus hold only for
period t. The other countries are assumed to behave individually. Formally, for given kN ,t−1, zt−1:
(i) the members of coalition U maximize jointly the sum of their utilities :

max
hU,t,eU,t

∑
i∈U

[
Fi(ki,t, ei,t)− hi,t − πizt + ρw̃N

it+1(kN ,t, zt)
]

(26)

where hU,t =def {hi,t, i ∈ U} , eU,t =def {ei,t, i ∈ U} , under constraints (2) and (3), taking ej,t, hj,t

(∀j /∈ U) as given and w̃N
it+1(kN ,t, zt) is defined as in (23) where t is substituted for T. w̃N

it+1(kN ,t, zt)
is the future payoff obtained by country i at the IO’s during {t + 1, ..., T} .
(ii) each country outside the coalition solves :

max
hi,t,ei,t

Fi(ki,t, ei,t)− hi,t − πizt + ρw̃N
it+1(kN ,t, zt), i /∈ U (27)

under constraints (2) and (3), taking ej,t, hj,t (∀j 6= i) as given.
As before, given (2), the previous objectives can be equivalently maximized w.r.t. kt and et.

Solving simultaneously these problems leads to a set of FOC that fully characterize the partial
fallback equilibrium w.r.t. coalition U at time t (PAFE Ut) :
(i) for the members of coalition U :

∂Fi

∂ki,t

= 1− ρ
∑
i∈U

∂w̃N
it+1

∂ki,t

(28)

∂Fi

∂ei,t

= πU − ρ
∑
i∈U

∂w̃N
it+1

∂zt

(29)

(ii) for a country outside the coalition :

∂Fi

∂ki,t

= 1− ρ
∂w̃N

it+1

∂ki,t

, (30)

∂Fi

∂ei,t

= πi − ρ
∂w̃N

it+1

∂zt

(31)

Let kU
i,t, e

U
i,t (i ∈ N ) be the solutions of the FOC (28) to (31), and zU

t = [1−γ]zt−1 +
∑n

i=1 eU
i,t. Then

the payoffs of the countries are given by the following value functions :

wU
i,t(ki,t−1, zt−1) = Fi(k

U
i,t, e

U
i,t)− kU

i,t + [1− δi]ki,t−1 − πiz
U
t + ρw̃N

it+1(k
U
N ,t, z

U
t ), i ∈ N (32)

so that the payoff of coalition U is given by the value function :

WU
t (kU,t−1, zt−1) =

∑
i∈U

wU
i,t(ki,t−1, zt−1)

=
∑
i∈U

[
Fi(k

U
i,t, e

U
i,t)− kU

i,t + [1− δi]ki,t−1 − πiz
U
t

+ρw̃N
it+1(k

U
N ,t, z

U
t )

]

where kU,t−1 =def {ki,t−1, i ∈ U} . Notice that all the above is defined for t < T.
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2.2.2 Two particular cases

As before, the PAFE Ut, t < T generalizes two important particular cases : the fallback non-
cooperative equilibrium and the international optimum. These are similar but not identical to the
parallel cases defined above for t = T.

The fallback non-cooperative equilibrium at time t (FNCEt): The fallback non-cooperative
equilibrium is obtained when the coalition is a singleton (U = v = {i} for any i ∈ N ), i.e. all coun-
tries are assumed to behave in an individualistic manner at time t (and cooperatively afterwards).
Then the payoffs of the countries are given by the following value functions :

wv
i,t(ki,t−1, zt−1) = Fi(k

v
i,t, e

v
i,t)− kv

i,t + [1− δi]ki,t−1 − πiz
v
t + ρw̃N

it+1(k
v
N ,t, z

v
t ), i ∈ N (33)

where kv
i,t, e

v
i,t are solution of the FOC (28) to (31) when U = v, and

zv
t = [1− γ]zt−1 +

n∑
i=1

ev
i,t (34)

For every t < T, the key difference between the FNCEt and the NCNET lies in the presence of
the terms ρw̃N

it+1 in (33) compared to (15) : this is where our behavioral assumption on expectations
comes into play.

The international optimum at time t (IOt): The international optimum is obtained when the
coalition contains all countries (U = N ). Thus all countries are supposed to behave cooperatively
(i.e. they maximize jointly the sum of their utilities) at time t as well as in the whole future. The
payoff of country i at the IO is given by the following value function :

wN
i,t(ki,t−1, zt−1) = Fi(k

N
i,t, e

N
i,t)− kNi,t + [1− δi]ki,t−1 − πiz

N
t + ρw̃N

it+1(k
N
N ,t, z

N
t ), i ∈ N (35)

where kN ,t =def {ki,t, i ∈ N} , kNit , eNit (i ∈ N ) are solution of the FOC (28) to (31) when U = N ,
and

zNt = [1− γ]zt−1 +
n∑

i=1

eNit (36)

Thus the global payoff of all countries is given by the value function :

WN
t (kN ,t−1, zt−1) =

n∑
i=1

wN
i,t(ki,t−1, zt−1) (37)

=
∑
i∈N

[
Fi(k

N
i,t, e

N
i,t)− kNi,t + [1− δi]ki,t−1 − πiz

N
t

+ρw̃N
it+1(k

N
N ,t, z

N
t )

]

By definition of the IO, one verifies that

WN
t (kN ,t−1, zt−1) ≥

n∑
i=1

wU
i,t(ki,t−1, zt−1), ∀U ⊂ N (38)

From a collective point of view, the IOt is preferable to any solution ot the partial agreement type.
However (38) may not be sufficient to ensure cooperation. Indeed if ∃U ⊂ N such that∑

i∈U wN
it (ki,t−1, zt−1) < WU

t (kU,t−1, zt−1), then coalition U will not cooperate without compensation
for the lower payoff it obtains.
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2.2.3 Transfers at time t

To induce all countries to cooperate to the achievement of the international optimum at time t, we
proceed as in period T (see subsection 2.1.3). Let

θi,t(kN ,t−1, zt−1) = −[wN
i,t(ki,t−1, zt−1)− wv

i,t(ki,t−1, zt−1)] (39)

+
πi

πN
[WN

t (kN ,t−1, zt−1)−
n∑

i=1

wv
i,t(ki,t−1, zt−1)]

be the transfer (> 0 if received, < 0 if paid) to country i at time t, where as before πN =
∑

i∈N πi.
By construction, the budget of the transfers defined by (39) is balanced, i.e. :

n∑
i=1

θi,t(kN ,t−1, zt−1) = 0 (40)

The difference WN
t (kN ,t−1, zt−1)−

∑n
i=1 wv

i,t(ki,t−1, zt−1) is the ecological surplus resulting from the
extension of international cooperation to period t. Then at the international optimum country i’s
payoff including transfers becomes

w̃N
i,t(kN ,t−1, zt−1) = wN

i,t(ki,t−1, zt−1) + θi,t(kN ,t−1, zt−1) (41)

= wv
i,t(ki,t−1, zt−1)

+
πi

πN
[WN

t (kN ,t−1, zt−1)−
n∑

i=1

wv
i,t(ki,t−1, zt−1)]

Since the ecological surplus is positive, one has :

w̃N
i,t(kN ,t−1, zt−1)− wv

i,t(ki,t−1, zt−1)

=
πi

πN
[WN

t (kN ,t−1, zt−1)−
n∑

i=1

wv
i,t(ki,t−1, zt−1)] ≥ 0, ∀i ∈ N

Thus cooperation with transfers is individually rational at time t, in the sense that each country is
better off at the IOt with transfers than at the FNCEt, whatever the inherited stock of pollutant
zt−1 and the vector of capital stocks kN ,t−1.

In section 4 below, we generalize Chander and Tulkens (1997) result to our dynamic setting and
show that : ∑

i∈U

w̃N
i,t(ki,t−1, zt−1) ≥ WU

t (kU,t−1, zt−1), ∀U ⊂ N , ∀t ∈ T (42)

i.e. cooperation with transfers is rational in the sense of coalitions at time t, in the sense that a
coalition would enjoy a lower payoff than the one it would obtain at the IOt with transfers, whatever
the inherited stock of pollutant zt−1 and the vector of capital stocks kN ,t−1. This is similar to the
core property mentioned above with (25) for t = T. It is here extended to all t < T.

We have thus shown that :
- at time T, the IOT with transfers is preferable for all countries to what they would obtain either
as a member of a coalition or individually (in the sense of the PANE UT defined above);
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- if ∀τ = t+ 1, ..., T, the IOτ with transfers is preferable for all countries to what they would obtain
either as a member of a coalition or individually (in the sense of the PAFE Ut defined above), then
the IOt with transfers is also preferable at time t.

Proceeding backwards from t = T to t = 1, the final result is that all countries cooperate in
each period (no coalition will ever form). This determines the emission and the capital stock levels
in each period and also the trajectory of the stock of pollutant, given its initial value z0. In turn
this trajectory determines the values of the functions wv

i , wN
i and w̃N

i , and therefore also the values
of the transfers θi.

In the infinite horizon case, the backward reasoning considered above applies no more. However,
we can consider the stationary solution by taking advantage of the fact that (i) the production
functions Fi and damage functions Di do not depend directly on time as well as (ii) the sharing
parameters πi/πN not to depend directly on time either. The functional forms of the solutions thus
only vary in time through the varying stocks k and z. The structure of the problem is then the
same as in the finite horizon case.

3 Solution

We now compute the trajectories of the emissions, the capital stocks, the pollutant stock, as well
as the values of the payoffs and of the transfers.

3.1 The system of equations

For each7 U ⊆ N and each t ∈ T , the PAFE Ut is characterized by the following payoffs :

WU
t (kU,t−1, zt−1) = max

kU,t,eU,t





∑
i∈U




Fi(ki,t, ei,t)− ki,t + [1− δi]ki,t−1 − πizt

+ρwv
i,t+1 (ki,t, zt)

+ρ πi

πN

[
WN

t+1(kN ,t, zt)−
∑

j∈N wv
j,t+1(kj,t, zt)

]








(43)

wU
i,t(ki,t−1, zt−1) = max

ki,t,ei,t





Fi(ki,t, ei,t)− ki,t + [1− δi]ki,t−1 − πizt

+ρwv
i,t+1 (ki,t, zt)

+ρ πi

πN

[
WN

t+1(kN ,t, zt)−
∑

j∈N wv
j,t+1(kj,t, zt)

]





, i /∈ U (44)

under constraint (3), with terminal values WU
T+1(kU,T , zT ) = wU

i,T+1(ki,T , zT ) = 0. We observe that
WU

t (kU,t−1, zt−1) and wU
i,t(ki,t−1, zt−1) are linear function of their arguments. Let

WU
t (kU,t−1, zt−1) = PU

t +
∑
i∈U

qU
i,tki,t−1 + RU

t zt−1

and
wU

i,t(ki,t−1, zt−1) = pU
i,t + qU

i,tki,t−1 + rU
i,tzt−1, ∀i /∈ U

where the parameters PU
t , qU

i,t, R
U
t (i ∈ U, t ∈ T ) and pU

i,t, q
U
i,t, r

U
i,t (i /∈ U, t ∈ T ) are to be identified.

7Clearly, for U = N , the expression (44) disappears as well as those derived from it in the sequel.
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Assume that kU
N ,t and eU

N ,t are the solution of the FOC characterising the PAFE Ut. From (43)
and (44), it follows that :

PU
t +

∑
i∈U

qU
i,tki,t−1 + RU

t zt−1 =
∑
i∈U




Fi(k
U
i,t, e

U
i,t)− kU

i,t + [1− δi]ki,t−1 − πiz
U
t

+ρ
[
pv

i,t+1 + qv
i,t+1k

U
i,t + rv

i,t+1z
U
t

]

+ρ πi

πN

[
PN

t+1 +
∑

j∈N qNj,t+1k
U
j,t + RN

t+1z
U
t

−∑
j∈N

[
pv

j,t+1 + qv
j,t+1k

U
j,t + rv

j,t+1z
U
t

]
]


 (45)

and

pU
i,t + qU

i,tki,t−1 + rU
i,tzt−1 =




Fi(k
U
i,t, e

U
i,t)− kU

i,t + [1− δi]ki,t−1 − πiz
U
t

+ρ
[
pv

i,t+1 + qv
i,t+1k

U
i,t + rv

i,t+1z
U
t

]

+ρ πi

πN

[
PN

t+1 +
∑

i∈N qNi,t+1k
U
i,t + RN

t+1z
U
t

−∑
j∈N

[
pv

j,t+1 + qv
j,t+1k

U
i,t + rv

j,t+1z
U
t

]
]


 , i /∈ U (46)

where zU
t = [1−γ]zt−1+EU

t and EU
t =def

∑n
i=1 eU

i,t. The parameter identification in the two members
of (45) gives :

PU
t =

∑
i∈U




Fi(k
U
i,t, e

U
i,t)− kU

i,t − πiE
U
t

+ρ
[
pv

i,t+1 + qv
i,t+1k

U
i,t + rv

i,t+1E
U
t

]

+ρ πi

πN

[
PN

t+1 +
∑

j∈N qNj,t+1k
U
j,t + RN

t+1E
U
t

−∑
j∈N

[
pv

j,t+1 + qv
j,t+1k

U
j,t + rv

j,t+1E
U
t

]
]


 (47)

qU
i,t = 1− δi, i ∈ U (48)

RU
t = [1− γ]

∑
i∈U

[
−πi + ρrv

i,t+1 + ρ
πi

πN

[
RN

t+1 −
∑
j∈N

rv
j,t+1

]]
(49)

Similarly, the identification in the two members of (46) gives :

pU
it =




Fi(k
U
i,t, e

U
i,t)− kU

i,t − πiE
U
t

+ρ
[
pv

i,t+1 + qv
i,t+1k

U
i,t + rv

i,t+1E
U
t

]

+ρ πi

πN

[
PN

t+1 +
∑

j∈N qNj,t+1k
U
j,t + RN

t+1E
U
t

−∑
j∈N

[
pv

j,t+1 + qv
j,t+1k

U
j,t + rv

j,t+1E
U
t

]
]


 , i /∈ U (50)

qU
i,t = 1− δi, i /∈ U (51)

rU
it = [1− γ]

[
−πi + ρrv

i,t+1 + ρ
πi

πN

[
RN

t+1 −
∑
j∈N

rv
j,t+1

]]
, i /∈ U (52)

Finally, the FOC derived from (43) and (44) lead to the following equations :

∂Fi

∂ki,t

(kU
i,t, e

U
i,t) = 1− ρqv

i,t+1 − ρ
[
qNi,t+1 − qv

i,t+1

] ∑
j∈U

πj

πN
, i ∈ U (53)

∂Fi

∂ki,t

(kU
i,t, e

U
i,t) = 1− ρqv

i,t+1 − ρ
[
qNi,t+1 − qv

i,t+1

] πi

πN
, i /∈ U (54)

∂Fi

∂ei,t

(kU
i,t, e

U
i,t) =

∑
j∈U

[
πj − ρrv

j,t+1 + ρ
πj

πN

[
RN

t+1 −
∑

l∈N
rv
l,t+1

]]
, i ∈ U (55)

∂Fi

∂ei,t

(kU
i,t, e

U
i,t) = πi − ρrv

i,t+1 + ρ
πi

πN

[
RN

t+1 −
∑
j∈N

rv
j,t+1

]
, i /∈ U (56)
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Equations (47) to (56) form a system of equations whose unknowns are {(PU
t , qU

i,t (i ∈ U), RU
t ),

(pU
it , q

U
i,t, r

U
it ; i /∈ U), (kU

i,t, e
U
i,t; i ∈ N ); t ∈ T } where all variables are nil when t = T + 1.

3.2 Solving the system

3.2.1 qU
i,t , i ∈ N , t ∈ T

These parameters are immediately known via (48) and (51).

3.2.2 RU
t and rU

it (i /∈ U), t ∈ T
First one observes that in the particular case U = N , (49) leads to RN

t = [1 − γ]
[−πN + ρRN

t+1

]
(recall that πN =

∑
j∈N πj). On the other hand, when U = v,

rv
i,t = [1 − γ]

[
−πi + ρrv

i,t+1 + ρ πi

πN

[
RN

t+1 −
∑

j∈N rv
i,t+1

]]
⇒ ∑

i∈U rv
i,t = RU

t , ∀U ⊂ N . This is

particular true for U = N . Then (49) reduces to :
(i) coalition U :

RU
t = [1− γ]

[−πU + ρRU
t+1

]

where πU =def

∑
i∈U πi. Given that RU

T+1 = 0, it follows that :

RU
t = −πU [1− γ]

1− ρT+1−t[1− γ]T+1−t

1− ρ[1− γ]
, U ⊂ N (57)

When U = v,

rv
i,t = −πi[1− γ]

1− ρT+1−t[1− γ]T+1−t

1− ρ[1− γ]
, i ∈ N (58)

(ii) For non-members of the coalition, it follows that rU
it = [1−γ]

[−πi + ρrv
i,t+1

] ⇒ rU
it = rv

i,t (i /∈ U).

3.2.3 kU
i,t and eU

i,t , i ∈ N , t ∈ T
FOC (53) to (56) reduce to :

∂Fi

∂ki,t

(kU
i,t, e

U
i,t) = 1− ρ [1− δi] , i ∈ N (59)

∂Fi

∂ei,t

(kU
i,t, e

U
i,t) = πU − ρRU

t , i ∈ U (60)

∂Fi

∂ei,t

(kU
i,t, e

U
i,t) = πi − ρrv

i,t, i /∈ U (61)

Given that RU
t and rv

i,t are known via (57) and (58), this system enables to compute the solutions
kU
N ,t and eU

N ,t.
For example, if Fi is the familiar Cobb-Douglas production function defined by yi = Fi(k, e) =

kαieβi (with 0 < αi, βi < αi + βi < 1), then :
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kU
i,t =

[
1− ρ[1− δi]

αi

][1−βi]/[αi+βi−1] [
πU{1− [ρ[1− γ]]T+1−t}

βi[1− ρ[1− γ]]

]βi/[αi+βi−1]

eU
i,t =

[
1− ρ[1− δi]

αi

]αi/[αi+βi−1] [
πU{1− [ρ[1− γ]]T+1−t}

βi[1− ρ[1− γ]]

][1−αi]/[αi+βi−1]

yU
i,t = (kU

i,t)
αi(eU

i,t)
βi =

[
1− ρ[1− δi]

αi

]αi/[αi+βi−1] [
πU{1− [ρ[1− γ]]T+1−t}

βi[1− ρ[1− γ]]

]βi/[αi+βi−1]

.

3.2.4 PU
t and pU

it (i /∈ U), t ∈ T
(47) reduces to :

PU
t =

∑
i∈U

[
Fi(k

U
i,t, e

U
i,t)− kU

i,t − πiE
U
t + ρ

[
pv

i,t+1 + [1− δi] k
U
i,t + rv

i,t+1E
U
t +

πi

πN

[
PN

t+1 −
∑
j∈N

pv
j,t+1

]]]

Thus

PN
t =

∑
i∈N

[
Fi(k

N
i,t, e

N
i,t)− kNi,t

]− πNEN
t + ρ

[
PN

t+1 +
∑
i∈N

[1− δi] k
N
i,t + RN

t+1E
N
t

]

=
T∑

τ=t

ρτ−t

[∑
i∈N

[
Fi(k

N
i,τ , e

N
i,τ )− kNi,τ + ρ [1− δi] k

N
i,τ + ρRN

τ+1E
N
τ

]− πNEN
τ

]
(62)

When U = v,

pv
it = Fi(k

v
i,t, e

v
i,t)− kv

i,t − πiE
v
t + ρ

[
pv

i,t+1 + [1− δi] k
v
i,t + rv

i,t+1E
v
t +

πi

πN

[
PN

t+1 −
∑
j∈N

pv
i,t+1

]]
(63)

for all i ∈ N . Summing on i gives :

∑
i∈N

pv
it =

∑
i∈N

[
Fi(k

v
i,t, e

v
i,t)− kv

i,t

]− πNEv
t + ρ

[
PN

t+1 +
∑
i∈N

[1− δi] k
v
i,t +

∑
i∈N

rv
i,t+1E

v
t

]
(64)

(62) and (64) give :

PN
t −

∑
j∈N

pv
j,t =

n∑
i=1

[∆Fi −∆ki,t]− πN∆Et + ρ

[
n∑

i=1

[1− δi] ∆ki,t −RN
t+1∆Et

]
(65)

where by definition ∆xt = xNt − xv
t is the difference between the values of xt at the IOt (where

U = N ) and at the fallback non-cooperative equilibrium (where U = v). From the previous
computations, all the quantities of the RHS are known so that PN

t −
∑

j∈N pv
j,t is computable. Then

pi,t (∀i) follows as well from the integration of (63) :

pv
it =

T∑
τ=t

ρτ−t

[
Fi(k

v
i,τ , e

v
i,τ )− kv

i,τ − πiE
v
τ + ρ

[
[1− δi] k

v
i,τ + rv

i,τ+1E
v
t +

πi

πN

[
PN

τ+1 −
∑
j∈N

pv
τ,t+1

]]]

and the whole system is solved.
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4 Coalitional rationality

Assume that at date t there exists a sequence of future transfers that makes international cooperation
rational in the sense of coalitions from t+1 onwards. Let kNt and zNt be the vector of capital stocks
and the stock of pollution at the international optimum at date t. Let kv

t and zv
t be the vector

of capital stocks and the stock of pollution at the fallback non-cooperative equilibrium at date t.
Let (wN

1t , ..., w
N
nt) and (wv

1t, ..., w
v
nt) be the vectors of the countries’payoffs at the IO without current

transfers and at the fallback non-cooperative equilibrium at date t respectively. Let WN
t and W v

t

be the sum of the components of these vectors. Let the vector of countries’payoffs with current
transfers (w̃N

1,t, ..., w̃
N
n,t) be defined by

w̃N
i,t(kN ,t−1, zt−1) = wN

i,t(ki,t−1, zt−1) + θi,t(kN ,t−1, zt−1), i ∈ N
where the vector of current transfers (θ1t, ..., θnt) is such that

θi,t(kN ,t−1, zt−1) = −[wN
i,t(ki,t−1, zt−1)−wv

i,t(ki,t−1, zt−1)]+
πi

πN
[WN

t (kN ,t−1, zt−1)−W v
t (kN ,t−1, zt−1)].

(66)
Theorem : With the transfers (66), one has for every coalition U ⊂ N :

∑
i∈U

w̃N
i,t(ki,t−1, zt−1) ≥

∑
i∈U

wU
i,t(ki,t−1, zt−1) = WU

t (kU,t−1, zt−1) (67)

that is, the vector (w̃N
i,t, i ∈ N ) has the core property (42). Thus the IOt with transfers (66) make

international cooperation rational in the sense of coalitions at every date t as announced at the end
of section 2.

Proof of the theorem : The proof makes use of the 3 following lemmas.

Lemma 0 : The transfers (66) can be rewritten :

θit(kN ,t−1, zt−1) = − [
yNi,t − yv

i,t − [1− ρ [1− δi]]
[
kNi,t − kv

i,t

]]

+
πi

πN

n∑
j=1

[
yNj,t − yv

j,t − [1− ρ [1− δj]]
[
kNj,t − kv

j,t

]]

Proof : Recall that WN
t (kN ,t−1, zt−1) = PN

t +
∑

i∈N qNi,tki,t−1 + RN
t zt−1 and W v

t (kt−1, zt−1) =∑n
i=1 wv

i,t(ki,t−1, zt−1) =
∑n

i=1

[
pv

i,t + qv
i,tki,t−1 + rv

i,tzt−1

]
. Recall that qNi,t = qv

i,t and RN
t =

∑n
i=1 rv

i,t

(see section 3). It follows that

θi,t(kt−1, zt−1) = −[wN
i,t(ki,t−1, zt−1)− wv

i,t(ki,t−1, zt−1)] +
πi

πN

[
PN

t −
n∑

i=1

pv
i,t

]
(68)

Now :

wN
i,t(ki,t−1, zt−1)

= yNi,t − kNi,t + [1− δi]ki,t−1 − πiz
N
t + ρ[wv

i,t+1(k
N
i,t, z

N
t ) +

πi

πN

[
WN

t+1(k
N
N ,t, z

N
t )−W v

t+1(k
N
N ,t, z

N
t )

]

= yNi,t − kNi,t + [1− δi]ki,t−1 − πiz
N
t + ρ

[
pv

i,t+1 + qv
i,t+1k

N
i,t + rv

i,t+1z
N
t +

πi

πN

[
PN

t+1 −
n∑

i=1

pv
i,t+1

]]
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Similarly,

wv
i,t(ki,t−1, zt−1)

= yv
i,t − kv

i,t + [1− δi]ki,t−1 − πiz
v
t + ρ[wv

i,t+1(k
v
i,t, z

v
t ) +

πi

πN

[
WN

t+1(k
v
N ,t, z

v
t )−W v

t+1(k
v
N ,t, z

v
t )

]

= yv
i,t − kv

i,t + [1− δi]ki,t−1 − πiz
v
t + ρ

[
pv

i,t+1 + qv
i,t+1k

v
i,t + rv

i,t+1z
v
t +

πi

πN

[
PN

t+1 −
n∑

i=1

pv
i,t+1

]]

Thus, making use of the solution for qv
i,t+1 and rv

i,t+1 (recall (48), (51) and (58)), of zv
t = [1−γ]zt−1 +

Ev
t and of zNt = [1− γ]zt−1 + EN

t ,

wN
i,t(ki,t−1, zt−1)− wv

i,t(ki,t−1, zt−1) = yNi,t − yv
i,t − [1− ρ [1− δi]]

[
kNi,t − kv

i,t

]
+ πi

[
EN

t − Ev
t

]

−πi[1− γ]
1− ρT−t[1− γ]T−t

1− ρ[1− γ]

[
EN

t − Ev
t

]

On the other hand, given (65) :

PN
t+1 −

n∑
i=1

pv
i,t+1 =

n∑
i=1

[
yNi,t − yv

i,t −
[
kNi,t − kv

i,t

]− πi

[
EN

t − Ev
t

]]

+ρ

[
n∑

i=1

[1− δi]
[
kNi,t − kv

i,t

]− πN [1− γ]
1− ρT−t[1− γ]T−t

1− ρ[1− γ]

[
EN

t − Ev
t

]
]

Putting these two last expressions in (68) completes the proof.¥

Lemma 1 : At date t, comparing the fallback non-cooperative equilibrium and the PAFE U,
one has

(a) yU
i,t − [1− ρ [1− δi]] k

U
i,t > yv

i,t − [1− ρ [1− δi]] k
v
i,t, i ∈ U (69)

(b) yU
i,t − [1− ρ [1− δi]] k

U
i,t = yv

i,t − [1− ρ [1− δi]] k
v
i,t, i /∈ U (70)

Proof : (i) The FOC characterizing the PAFE Ut are :

∂Fi

∂ki,t

(kU
i,t, e

U
i,t) = 1− ρ [1− δi] =def µi (71)

∂Fi

∂ei,t

(kU
i,t, e

U
i,t) = π

[
1 + ρ[1− γ]

1− ρT−t[1− γ]T−t

1− ρ[1− γ]

]
=def πηt (72)

with

π = πU if i ∈ U

π = πi if i /∈ U

One observes that the FOC are the same at the FNCEt and at the PAFE Ut for i /∈ U, so that
kU

i,t = kv
i,t and eU

i,t = ev
i,t ⇒ yU

i,t = yv
i,t (i /∈ U). Thus (b) is proved.
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(ii) Let us differentiate totally (71) and (72) w.r.t. π :

∂2Fi

∂k2
i,t

dki,t +
∂2Fi

∂ki,t∂ei,t

dei,t = 0 (73)

∂2Fi

∂ki,t∂ei,t

dki,t +
∂2Fi

∂e2
i,t

dei,t = ηtdπ (74)

Solving the system leads to :

dei,t =

∂2Fi

∂k2
i,t

∂2Fi

∂k2
i,t

∂2Fi

∂e2
i,t
−

[
∂2Fi

∂ki,t∂ei,t

]2dπ =def ∆idπ (75)

∆i < 0 because of the assumptions on Fi (see section 1). On the other hand, yi,t = Fi(ki,t, ei,t) ⇒

dyi,t =
∂Fi

∂ki,t

dki,t +
∂Fi

∂ei,t

dei,t (76)

Given (71) and (75), one has at the PAFE Ut :

dyi,t − µidki,t =
∂Fi

∂ei,t

ηtdπ < 0 if dπ > 0 (77)

because of the assumptions on Fi (see section 1) and ηt > 0.
For coalition members, moving from the FNCEt to the PAFE Ut can be seen as a succession of

small increments dπ, starting at πi an finishing at πU =
∑

i∈U πi (> πi). So that point (a) follows.¥

Lemma 2 : if ∃ U ⊂ N such that :

WU
t (kU,t−1, zt−1) >

∑
i∈U

w̃N
it (kN ,t−1, zt−1) (78)

then the vector (ŵ1t, ..., ŵnt) defined by

ŵit(kN ,t−1, zt−1) = wN
it (ki,t−1, zt−1) + θ̂it(kN ,t−1, zt−1), i ∈ N (79)

where θ̂it(kN ,t−1, zt−1) = −[wN
it (ki,t−1, zt−1)− wU

it (ki,t−1, zt−1)] (80)

+
πi

πN

[
WN

t (kN ,t−1, zt−1)−
n∑

j=1

wU
it (ki,t−1, zt−1)

]

where wU
it (ki,t−1, zt−1) = Fi(k

U
i,t, e

U
i,t)− kU

i,t + [1− δi]ki,t−1 − πi[[1− γ]zt−1 + EU
t ] (81)

+ρwv
i,t+1

(
kU

i,t, [1− γ]zt−1 + EU
t

)

+ρ
πi

πN

[
WN

t+1(k
U
N ,t, [1− γ]zt−1 + EU

t )−W v
t+1(k

U
N ,t, [1− γ]zt−1 + EU

t )
]

dominates (w̃N
1t , ..., w̃

N
nt) in the sense that

(i)
∑
i∈U

ŵit(kN ,t−1, zt−1) >
∑
i∈U

w̃N
it (kN ,t−1, zt−1) (82)

(ii) ŵit(kN ,t−1, zt−1) ≥ w̃N
it (kN ,t−1, zt−1), i /∈ U (83)
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Proof : (i) (79) et (80) ⇒

ŵit(kN ,t−1, zt−1) = wU
it (ki,t−1, zt−1) +

πi

πN

[
WN

t (kN ,t−1, zt−1)−
n∑

j=1

wU
it (ki,t−1, zt−1)

]

≥ wU
it (ki,t−1, zt−1)] (84)

because the term between brackets is necessarily positive by definition of the IO. Then

∑
i∈U

ŵit(kt−1, zt−1) ≥
∑
i∈U

wU
it (ki,t−1, zt−1) = WU

t (kU,t−1, zt−1) >
∑
i∈U

w̃N
it (kN ,t−1, zt−1)

where the first inequality results from (84) and the second follows from assumption (78). Thus (82)
is verified.

(ii) (83) can be rewritten

ŵit(kN ,t−1, zt−1) = wN
it (ki,t−1, zt−1) + θ̂it(kN ,t−1, zt−1)

≥ w̃N
it (kN ,t−1, zt−1) = wN

it (ki,t−1, zt−1) + θit(kN ,t−1, zt−1), i /∈ U

Thus verifying (83) is equivalent to verity that

θ̂it(kN ,t−1, zt−1) ≥ θit(kN ,t−1, zt−1), i /∈ U

Now, by Lemma 0,

θit(kN ,t−1, zt−1) = − [
yNi,t − yv

i,t − [1− ρ [1− δi]]
[
kNi,t − kv

i,t

]]

+
πi

πN

n∑
j=1

[
yNj,t − yv

j,t − [1− ρ [1− δj]]
[
kNj,t − kv

j,t

]]

By a similar reasoning,

θ̂it(kN ,t−1, zt−1) = − [
yNi,t − yU

i,t − [1− ρ [1− δi]]
[
kNi,t − kU

i,t

]]

+
πi

πN

n∑
j=1

[
yNj,t − yU

j,t − [1− ρ [1− δj]]
[
kNj,t − kU

j,t

]]

Then θ̂it(kt−1, zt−1) ≥ θit(kt−1, zt−1) (i /∈ U) ⇒

− [
yU

i,t − yv
i,t − [1− ρ [1− δi]]

[
kU

i,t − kv
i,t

]]
+

πi

πN

n∑
j=1

[
yU

j,t − yv
j,t − [1− ρ [1− δj]]

[
kU

j,t − kv
j,t

]] ≥ 0, i /∈ U

This is indeed true because of Lemma 1, so (83) is verified.¥

Proof of the theorem : (82) and (83) ⇒
n∑

i=1

ŵit(kN ,t−1, zt−1) >

n∑
i=1

w̃N
it (kN ,t−1, zt−1)
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⇒
n∑

i=1

[
wN

it (ki,t−1, zt−1) + θ̂it(kN ,t−1, zt−1)
]

>

n∑
i=1

[
wN

it (ki,t−1, zt−1) + θit(kN ,t−1, zt−1)
]

(85)

⇒
n∑

i=1

θ̂it(kN ,t−1, zt−1) >

n∑
i=1

θit(kN ,t−1, zt−1) (86)

Now this last result is impossible because these two sums are by construction equal to 0. This
contradicts the thesis of Lemma 2, so the theorem is demonstrated.¥
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